

Combined effects of environmental concentrations of copper and arsenic on natural river sediment microbial communities

Ayanleh Mahamoud Ahmed

Supervisors:

Emilie Lyautey & Stéphane Pesce

Sediment

- **→** Essential component of aquatic ecosystems
- **→** Natural reservoir of contaminants

Sediment

- **→** Essential component of aquatic ecosystems
- **→** Natural reservoir of contaminants

→ Little is known about the impact of contaminants on communities

Sediment

- **→** Essential component of aquatic ecosystems
- → Natural reservoir of contaminants

→ Little is known about the impact of contaminants on communities

Microbial communities

- **→** Metabolic diversity
- → Major players of all biogeochemical cycles

Arsenic (As) and Copper (Cu)

- **→** Ubiquitous, persistent
- → Present in the environment from natural and anthropogenic sources:
 - ✓ Geochimical, mining, agricultural application, industry

Arsenic (As) and Copper (Cu)

- → Ubiquitous, persistent
- → Present in the environment from natural and anthropogenic sources:
 - ✓ Geochimical, mining, agricultural application, industry

→ Toxicicity

	Threshold Effect Concentrations (TEC, mg Kg ⁻¹ DW)	Probable Effect Concentrations (PEC, mg Kg ⁻¹ DW)	
Arsenic	9.8	33	
Copper	31.6	149	
Lead	35.8	128	
Zinc	121	459	
Cadmium	1	5	

according to MacDonald et al. (2000)

Arsenic (As) and Copper (Cu)

- **→** Ubiquitous, persistent
- → Present in the environment from natural and anthropogenic sources:
 - ✓ Geochimical, mining, agricultural application, industry

→ Toxicicity

	Threshold Effect Concentrations (TEC, mg Kg ⁻¹ DW)	Probable Effect Concentrations (PEC, mg Kg ⁻¹ DW)	
Arsenic	9.8	33	
Copper	31.6	149	
Lead	35.8	128	
Zinc	121	459	
Cadmium	1	5	

according to MacDonald et al. (2000)

Arsenic (As) and Copper (Cu)

- → Ubiquitous, persistent
- → Present in the environment from natural and anthropogenic sources:
 - ✓ Geochimical, mining, agricultural application, industry
- **→** Toxicicity

	Threshold Effect Concentrations (TEC, mg Kg ⁻¹ DW)	Probable Effect Concentrations (PEC, mg Kg ⁻¹ DW)	
Arsenic	9.8	33	
Copper	31.6	149	
Lead	35.8	128	
Zinc	121	459	
Cadmium	1	5	

according to MacDonald et al. (2000)

Objective

Assessing the effects of chronic exposure to copper and arsenic (alone and mixture) on river sediment microbial communities

Material and Methods

Experimental design

Surface sediment: uncontaminated sediments from the Ain River

- •REF: without metal
- °Cu: 40 mg Cu/kg
- As: 40 mg As/kg
- •Mix: 40 mg Cu/kg + 40 mg As/kg
- Water recirculation: 6 L Renewal per week
- 21 days, 4 sampling times (days 0, 7, 14, 21)

Material and Methods

Experimental design

Surface sediment: uncontaminated sediments from the Ain River

Studied parameters

Microbial communities

Sediment characterization

Real Cu and As concentrations In water and sediment **Sediment descriptors** DW, AFDW, particle size

Functions (C, N, P cycles)

Enzymatic and metabolic activities, genetic potential

Structure

bacterial abundance (gPCR) and community composition (ARISA)

Tolerance acquisition

As: 40 mg As/kg

•Mix: 40 mg Cu/kg + 40 mg As/kg

Water recirculation: 6 L Renewal per week 21 days, 4 sampling times (days 0, 7, 14, 21)

> PICT (Pollution Induced Community Tolerance) approach

Results

Spiking efficiency

Cu and As concentrations in sediments (mg Kg -1)

Day 0

As

Cu:

As:

2.8

1.8

31.3

1.7

3.24

56.5

31.2

Spiking efficiency

Cu and As concentrations in sediments (mg Kg -1)

→ Low-contaminated reference sediment

Spiking efficiency

Cu and As concentrations in sediments (mg Kg ⁻¹)

- **→** Low-contaminated reference sediment
- → Initial concentration close to the targeted nominal concentrations

Spiking efficiency

Cu and As concentrations in sediments (mg Kg ⁻¹)

- **→** Low-contaminated reference sediment
- → Initial concentration close to the targeted nominal concentrations
- → Rather stable concentrations between days 0 and 21

Results

Effect on Functions: enzymatic activities (nmol/h/g DM)

Effect on Functions: enzymatic activities (nmol/h/g DM)

- **→** No effect of As on enzymatic activities
- → Fast and significant inhibition of activities under Cu and Mix exposure

Effect on Functions: enzymatic activities (nmol/h/g DM)

Exposure time (d)

Effects on Functions: Respiration (ng CO₂/h/g DM)

→ No effect of As on respiration

Effects on Functions: Respiration (ng CO₂/h/g DM)

→ No effect of As, Cu and Mix on bacterial 16S rRNA gene abundance

Effects on Functions: Denitrification (ng N₂O/h/g dw)

Effects on Functions: Denitrification (ng N₂O/h/g dw)

- → No effects of As on denitrification
- → Fast and significant inhibition of denitrification under Cu and Mix exposure

Effects on Functions: Denitrification (ng N₂O/h/g dw)

- → No effects of As on denitrification
- → Fast and significant inhibition of denitrification under Cu and Mix exposure
- → Recovery at day 21 under Cu alone

→ No effect of As, Cu and Mix on denitrification gene (nirS, nirK, nosZ clades I and II) abundances

Effects on Bacterial Community Composition (BCC)

Effects on Bacterial Community Composition (BCC)

→ No effect of As on BCC

- → Significant changes of BCC from the first week of exposure to Cu and Mix
- → No recovery of BCC between day 7 and day 21 under Cu and Mix exposure

PICT approach principle

After 21 days of chronic exposure and 4 hrs of acute exposition

Increasing Cu concentrations

→ No effect of Cu on tolerance of As exposed communities (i.e. no cotolerance)

After 21 days of chronic exposure and 4 hrs of acute exposition

→ No effect of Cu on tolerance of As exposed communities (i.e. no cotolerance)

→ Significant increase of Cu tolerance on communities exposed during 21 days to Cu and Mix

After 21 days of chronic exposure and 4 hrs of acute exposition

→ No effect of Cu on tolerance of As exposed communities (i.e. no cotolerance)

Increasing Cu concentrations

 Effective concentrations (EC) inhibiting 50% of beta-glucosidase activity after acute Cu exposure (4 hrs)

<i>-</i> ,	EC ₅₀ g/kg	Confidence Interval
REF	3.9	[2.8; 5.0]
As	4.1	[2.8; 5.4]
Cu	18.1	[12.6; 23.6]
Mix	10.7	[5.5; 16.0]

→ Significant increase of Cu tolerance on communities exposed during 21 days to Cu and Mix

After 21 days of chronic exposure and 4 hrs of acute exposition

→ No effect of Cu on tolerance of As exposed communities (*i.e.* no cotolerance)

Increasing Cu concentrations

 Effective concentrations (EC) inhibiting 50% of beta-glucosidase activity after acute Cu exposure (4 hrs)

3)	EC ₅₀ g/kg	Confidence Interval
REF	3.9	[2.8; 5.0]
As	4.1	[2.8; 5.4]
Cu	18.1	[12.6; 23.6]
Mix	10.7	[5.5; 16.0]

→ Significant increase of Cu tolerance on communities exposed during 21 days to Cu and Mix

Conclusions and Perspectives

→ Environmental concentrations of As

Undetectable or very limited effect on functions, structure and tolerance

Hyp1: low bioavailability of the contaminant?

√ Important complexation of arsenic with OM

Hyp2: Arsenic speciation: less toxic form?

onclusions and Perspectives

- **Environmental concentrations** of **As**
- Undetectable or very limited effect on functions, structure and tolerance

Hyp1: low bioavailability of the contaminant?

Important complexation of arsenic with OM

Hyp2: Arsenic speciation: less toxic form?

Hyp3: Presence of iron oxide?

✓ Adsorption of arsenic

Hyp4: Microbial communities tolerant to arsenic?

Quantification of resistances genes

Conclusions and Perspectives

→ Environmental concentrations of **Cu** alone and in **Mixture**

- Fast and marked effects on the structure and most of the measured functions
- No structural recovery but functional recovery at day 21 depending on the tested function and exposure conditions (alone or mix)
- Cu tolerance acquisition (PICT) under Cu and Mix exposure is consistent with BCC changes
 - ✓ Quantification of resistance genes: tolerance acquisition

From Patrick Billard et al. (2013)

Conclusions and Perspectives

→ Environmental concentrations of **Cu** alone and in **Mixture**

- Fast and marked effects on the structure and most of the measured functions
- No structural recovery but functional recovery at day 21 depending on the tested function and exposure conditions (alone or mix)
- Cu tolerance acquisition (PICT) under Cu and Mix exposure is consistent with BCC changes
 - ✓ Quantification of resistance genes: tolerance acquisition

From Patrick Billard et al. (2013)

- Metals accumulation in sediments impact microbial communities
 - ✓ Functional Role in Aquatic Ecosystems
- Application of PICT in the sediment compartment
 - ✓ Promising biomotoring tool for environmental risk

Thank you for your attention

Team MALY-EMHA:

Bernadette Volat **Bernard Motte** Chloé Bonnineau Christophe Rosy Anaïs Charton

Team MALY-LAMA: **Aymeric Dabrin**

Josiane Gahou Mathieu Masson

Team CARRTEL: Jérôme Jeandeand

Annie Millery Nathalie Tissot

Funding

AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

