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— Long-term data are needed
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+ Monitoring program % biovolume de I'espéce dans I'échantillon measurements
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Tacit hypothesis: ecosystems vulnerability to
climate fluctuations have been constant and
independent from local human disturbances
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? Sensibility Capacity of
(Responses responses
amplitude) (Adaptations)

Lake ecological

responses (Gallopin, 2006; Adger,
2006; Mumby et al., 2014)

Tacit hypothesis: ecosystems vulnerability to
climate fluctuations have been constant and
independent from local human disturbances

1) Local human impacts reduce ecosystem

resilience (Gallopin, 2006; Adger, 2006; Mumby et
al, 2014; e.g. Perga et al., 2015)
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Ecosystem state

Threshold

Tacit hypothesis: ecosystems vulnerability to
climate fluctuations have been constant and
independent from local human disturbances

2) Ecosystems can respond in a non-linear way

to perturbations (i.e. regime shift trajectory)
(Andersen et al., 2009; Scheffer et al., 2003)
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Tacit hypothesis: ecosystems vulnerability to
climate fluctuations have been constant and
independent from local human disturbances

3) There is a recovery debt for ecosystems even

years after they have been restore (Moreno-
Mateos et al., 2017)

Recovery debt
/Disturbance starts I Estimated recovery debt

Measure of ecosystem integrity
(e.g., species richess, carbon cycling)

Disturbance ends/ ts to
Time
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> Has local human impact increased ecosystem vulnerability to climate variability?

HQ Ecological vulnerability to climate variability
was constant over time: by looking at the
pre-Anthropocene  period, we  could
understand which relationship exists between
climate variability and ecosystem response.

H1

Local human pressures, by rearranging both the
horizontal and vertical diversity of ecosystems,
may have modified their resistance, resilience
and therefore vulnerability to successive
perturbations since entering the Anthropocene.
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Study site: Lake Geneva (CH, FR)

* Alps: Warming x2 /global average (Beniston, 2005)

* Good local climatic data (beware of the offsets in
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the reconstruction e.g. Guiot et al., 2010)
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Close to Aletsch glacier (Goehring et al., 2012; Joerin
et al., 2006)
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Study site: Lake Geneva (CH, FR)

* Summer Air Temperature reconstructed by Buntgen
et al., 2006
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Fi1G. 1. Location of the four MXD tree-ring sites (red dots, bold) within the Swiss Alps, and the additional Alpine RW sites (red
circles, italic) used by Buntgen et al. (2005a).
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Radioelements (surface)
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Final age model

Composite core
(this study)
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Composite core
(this study)

Diatoms Local forcing: diatom-inferred total phosphorus (DI-TP)

A e =€

Fig 1. Diatoms in lake sediment © Swedish
Research Council

-



.09

trategy

Composite core
(this study)

% Diatoms Local forcing: diatom-inferred total phosphorus (DI-TP)
.;’
Response:

Reconstitution of cladoceran communities: one of the most well represented group of
aquatic invertebrates leaving subfossil remains in sediment.

Fragments of individuals exosquette allow identification to the specie level most of the
time. Identification of a representative number of remains allows the reconstitution of the
community at a specific time, giving information on ecological niches.

Cladocera

pr?’ A — o b £ 2
Fig 1. Diatoms in lake sediment © Swedish Fig 2. Cladoceran subfossils Fig 3. Identification of subfossils
Research Council remains to the specie level
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HQ Ecological vulnerability to climate variability
was constant over time: by looking at the
pre-Anthropocene  period, we  could
understand which relationship exists between
climate variability and ecosystem response.

Climate

Lake ecological
responses

H1 Local human pressures, by rearranging both the
horizontal and vertical diversity of ecosystems,
may have modified their resistance, resilience
and therefore vulnerability to successive
perturbations since entering the Anthropocene.

Human
activities

Climate

Lake ecological
responses
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HQ Ecological vulnerability to climate variability
was constant over time: by looking at the
pre-Anthropocene  period, we  could
understand which relationship exists between
climate variability and ecosystem response.

Climate

Lake ecological
responses

Model

/

H1 Local human pressures, by rearranging both the
horizontal and vertical diversity of ecosystems,
may have modified their resistance, resilience
and therefore vulnerability to successive
perturbations since entering the Anthropocene.

Human
activities

Climate

Lake ecological
responses

Lake ecological responses = f(climatic forcing)

Lake ecological responses = f(climatic forcing + local forcing)
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C-)> Forcings

1960s: eutrophication
1980s: Climatic regime-shift (Woolway et al., 2017)
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« 563-1934 C.E.: high
stability

« 3 restructuration during
the past century
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C-)> Model

Method: Dataset cut in two: <1934 and >1937
Question: Are SAT anomalies significant drivers of the assemblage?
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C-)> Model

Climate driven changes
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C-)> Model
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Before 1934 (the 15t restructuration in the
assemblage), Lake Geneva ecological
communities were resilient to climate variability.

Climate ‘ Human
activities

Lake ecological responses

Since 1937, a relationship could be
established between Lake  Geneva
ecological responses and climate variability.

Climate - Human
activities

Lake ecological responses
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Scenario 1
There is an air temperature above which Lake
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responded anyway (IPCC recommendations would need
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Scenario 2
Local human impact made Lake Geneva less resilient
to climate variability =» Management implications.
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Scenario 1

There is an air temperature above which Lake
Geneva cladoceran communities would have
responded anyway (IPCC recommendations would need
to be done by ecosystem??)
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Scenario 1

There is an air temperature above which Lake
Geneva cladoceran communities would have
responded anyway (IPCC recommendations would need
to be done by ecosystem??)

Threshold is relevant for Artic lakes (Arp et al., 2016), but Lake
Geneva was never dimictic (Forel, 1892).
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Local human impact made Lake Geneva less resilient
to climate variability =» Management implications.
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Scenario 2

Local human impact made Lake Geneva less resilient

to climate variability =» Management implications.

very slow processes and

small variability (driven by
natural processes)

Vs.

Lake Zabinskie, Poland (Hernandez-Almeida et al., 2017)

Lake Bourget, France (Capo et al., 2016)
Lake Garda, Italy (Milan et al., 2016)

Lake Varese, ltaly (Bruel et al., in prep)
Lake Geneva, CH/FR (Bruel et al., in prep)

new alternative state
with very high variability
and unstable conditions

= 1600 AD

= 1950s
= 1960s
= 1920s
= 1930s
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very slow processes and new alternative state
small variability (driven by with very high variability
,x—; natural processes) and unstable conditions
ox*
Vs.

> Ecologists: ecosystems may respond to forcings in a non linear way i.e. display
# vulnerability over time

Paleoscientists: worth having a better time-resolution and account for internal
=] processes when studying ecosystems responses
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