Optimization of diatom DNA metabarcoding for freshwater biomonitoring

Application to Mayotte streams monitoring network

V. Vasselon, I. Domaizon, F. Rimet, K. Tapolczai, A. Bouchez

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

Different approaches to evaluate the diatom community composition

Stream

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

Different approaches to evaluate the diatom community composition

INRA SCIENCE & IMPACT

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

Different approaches to evaluate the diatom community composition

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

Different approaches to evaluate the diatom community composition

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

Different approaches to evaluate the diatom community composition

Stream

Biofilm sampling

Chemical treatment

Morphological identification

Species inventory

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

❖ Different approaches to evaluate the diatom community composition

Stream

Biofilm sampling

Chemical treatment

Morphological identification

Species inventory

Water quality assessment

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

- Benthic diatoms are good biological indicators (Gerhardt et al. 2002)
 - Widely distributed in aquatic ecosystems
 - Some species are sensitive to physical and chemical factors
 - Diatom community is representative of water quality status
 - Used for water quality assessment (WFD Water Framework Directive)

*

A powerful approach

VASSELON

A powerful approach

Incompleteness of the database Taxonomic knowledge's **Database curation**

Sampling method? Sample preservation Free DNA

Cross contamination

Choice of DNA barcode **Primers efficiency Amplification errors PCR** inhibitors **Primers specificity**

Reference database

DNA

Sequencing **Bioinformatics** (HTS)

Water quality

Biofilm sampling

Extraction efficiency Diatom silica wall DNA quality/purity

Mistagging Library preparation Sequencing technology

Env. Barcode 1

Env. Barcode 2

Env. Barcode 3

ATCGGGATGCCA

ATCGGGATGCCA

ATCGGGAAACCA

Trimming Alignment Clustering

Species inventory

assessment

Taxonomic assignment Gene copy number variation Index calculation

A powerful approach which has been optimized at each step of the process

A powerful approach which has been optimized at each step of the process

Application to a monitoring network - Mayotte

Mayotte tropical Island

- French department since 31 March 2011 (between Mozambique and Madagascar)
- WFD must be applied to Mayotte streams

Application to a monitoring network - Mayotte

Mayotte tropical Island

- French department since 31 March 2011 (between Mozambique and Madagascar)
- WFD must be applied to Mayotte streams

Mayotte freshwater biomonitoring network :

- Regular biomonitoring network (RCS)
- Reference (REF) and polluted (POLL) networks are considered to have a water quality gradients

Application to a monitoring network - Mayotte

Mayotte tropical Island

- French department since 31 March 2011 (between Mozambique and Madagascar)
- WFD must be applied to Mayotte streams

Mayotte freshwater biomonitoring network

- Regular biomonitoring network (RCS)
- Reference (REF) and polluted (POLL) networks are considered to have a water quality gradients

Objective: development of biomonitoring tool for benthic diatoms

- Classical approach (based on microscopy and the WFD)
- DNA metabarcoding approach

Materiel and methods

Sampling of Mayotte's streams

- Sampling campaign realized in 2014 and 2015
- 45 sites for a total of 80 samples
- Sites from the 3 monitoring networks (RCS, REF, POLL)

Materiel and methods

Sampling of Mayotte's streams

- Sampling campaign realized in 2014 and 2015
- 45 sites for a total of 80 samples
- Sites from the 3 monitoring networks (RCS, REF, POLL)

Diatoms communities analysis

- Morphological identification
- DNA metabarcoding approach performed using
 - SA-gen method for DNA extraction
 - rbcL DNA barcode (312 bp)
 - PGM-Ion torrent for HTS
 - R-syst::diatom database

Materiel and methods

Sampling of Mayotte's streams

- Sampling campaign realized in 2014 and 2015
- 45 sites for a total of 80 samples
- Sites from the 3 monitoring networks (RCS, REF, POLL)

Diatoms communities analysis

- Morphological identification
- DNA metabarcoding approach performed using
 - SA-gen method for DNA extraction
 - rbcL DNA barcode (312 bp)
 - PGM-Ion torrent for HTS
 - R-syst::diatom database

Comparison morphological vs. molecular approaches

- Community structure (Bray Curtis dissimilarty + Mantel test)
- Diatom taxonomic composition
- Specific Pollution-Sensitivity Index (SPI) calculation

Comparison of molecular (OTUs) and morphological (diatom species)

Mantel's test using Bray-Curtis dissimilarity indices (r = 0.43, p = 0.01) => similar community structure

- **Comparison of molecular (OTUs) and morphological (diatom species)**Mantel's test using Bray-Curtis dissimilarity indices (r = 0.43, p = 0.01) => similar community structure
- Correspondence between morphological and molecular diatom inventories

Comparison of molecular (OTUs) and morphological (diatom species)

Mantel's test using Bray-Curtis dissimilarity indices (r = 0.43, p = 0.01) => similar community structure

Correspondence between morphological and molecular diatom inventories

Comparison of molecular (OTUs) and morphological (diatom species)

Mantel's test using Bray-Curtis dissimilarity indices (r = 0.43, p = 0.01) => similar community structure

Correspondence between morphological and molecular diatom inventories

Major bias: incompleteness of the reference database Problem for water quality assessment?

Calculation of molecular and morphological water quality indices (SPI – Specific Pollution Index)

Possible to discriminate samples from polluted network with both approaches

Calculation of molecular and morphological water quality indices (SPI – Specific Pollution Index)

Possible to discriminate samples from polluted network with both approaches

Good correlation between molecular and morphological SPI

But molecular SPI ≈ 3.6 points higher

Source of difference between molecular and morphological SPI

Source of difference between molecular and morphological SPI

Incompleteness of the reference database

Source of difference between molecular and morphological SPI

Incompleteness of the reference database

But not the major bias in Mayotte's molecular data

Source of difference between molecular and morphological SPI

Incompleteness of the reference database

Microscopy -> low abundant Molecular -> abundant

Source of difference between molecular and morphological SPI

Incompleteness of the reference database

Microscopy -> low abundant Molecular -> abundant

Diatom with high biovolume are over-estimated => A need to develop a correction factor

- Development of a Correction Factor (CF) based on diatom biovolume
 - Link between cell biovolume and *rbc*L gene copy number ? qPCR on 8 diatom species (pure culture) with various biovolume

Development of a Correction Factor (CF) based on diatom biovolume

Link between cell biovolume and rbcL gene copy number ?
 qPCR on 8 diatom species (pure culture) with various biovolume

Development of a Correction Factor (CF) based on diatom biovolume

Link between cell biovolume and rbcL gene copy number ?
 qPCR on 8 diatom species (pure culture) with various biovolume

rbcL gene copy number directly correlated to cell biovolume

- **Development of a Correction Factor (CF) based on diatom biovolume**
 - Link between cell biovolume and *rbc*L gene copy number ? qPCR on 8 diatom species (pure culture) with various biovolume

rbcL gene copy number directly correlated to cell biovolume

Equation of the linear model used to create a CF for HTS molecular data

- Development of a Correction Factor (CF) based on diatom biovolume
 - Link between cell biovolume and rbcL gene copy number ?
 qPCR on 8 diatom species (pure culture) with various biovolume
 - Validation of the CF on DNA metabarcoding data (rbcL barcode)
 HTS of 5 mock communities with known DNA proportions of the 8 diatom species

Development of a Correction Factor (CF) based on diatom biovolume

- Link between cell biovolume and rbcL gene copy number ?
 qPCR on 8 diatom species (pure culture) with various biovolume
- Validation of the CF on DNA metabarcoding data (rbcL barcode)
 HTS of 5 mock communities with known DNA proportions of the 8 diatom species

Molecular inventories (HTS)

Development of a Correction Factor (CF) based on diatom biovolume

- Link between cell biovolume and rbcL gene copy number ?
 qPCR on 8 diatom species (pure culture) with various biovolume
- Validation of the CF on DNA metabarcoding data (rbcL barcode)
 HTS of 5 mock communities with known DNA proportions of the 8 diatom species

Molecular inventories (HTS)

Microscopy

CF increased congruence between molecular and morphological diatom inventories

Application of the CF on Mayotte molecular inventories

Application of the CF on Mayotte molecular inventories

Good correction of *Eunotia* genus

CF reduce significantly the difference between the two approaches (47%)

Conclusion

- ❖ Incorporation of DNA metabarcoding in monitoring network helps improving the molecular approach by identifying the major biases
 - Reference database incompleteness (endemic and tropical species)
 - Quantification bias linked to diatoms cell biovolume

- The DNA metabarcoding can be used for water quality assessment (SPI)
 - Good estimation of water quality status
 - Correction factors allow increasing the congruence with morphological SPI

What is next?

- Continue the development : completion of reference database, validation of standards, explore new molecular quality index, ...
- Move towards a progressive integration of DNA metabarcoding into monitoring network and the WFD

Thank you for your attention

